Mon Feb 26 11:22:5%3 2007

created on

" LL@LJ el H}LMLL

avyg) Oe @120 W@2/20 W3/20 W4/Z20 W 1o/20 W 19/20
0.19 % curren
nds

Mavigator Graph
ry 300 seco

age 11.89 % maximum

ing echopingi(l) eve

CR.TS % aver

Ping RTT {48.9 ms

Probe: 20 HTTP pings us

250 m T
200 m
Packet Loss

Median

The Varnish Roadshow

"Server domain (Client domain

RFC 2616 Origin Server

Verdens Gang Presents
A Linpro Production

The Varnish Roadshow
starring

The Varnish HTTP accelerator

Designed and coded by: Poul-Henning Kamp
Project infrastructure: Dag-Erling Smgargrav

Based on an idea by: Anders Berg

Content management system

From Wikipedia, the free encyclopedia

Jump to: navigation, search

A content management system (CMS) is a
computer software system used to assist its users
in the process of content management. CMS
facilitates the organization, control, and publication
of a large body of documents and other content,
such as images and multimedia resources. A CMS
often facilitates the collaborative creation of
documents. [...]

Suggested addition:

[...] CMS systems usually publish content via a terminally
slow HTTP server, and therefore need HTTP acceleration.

http://en.wikipedia.org/wiki/Content_management_system#column-one
http://en.wikipedia.org/wiki/Content_management_system#searchInput
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Content_management
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/Collaboration

RFC2616 CaSt IlSt Web browsers

A HTTP Accelerator Can never cache
is not a HTTP cache. per-user data
\
Caching policy can be \‘ 1
tailored to CMS system [ereremn T

and site policies.

RFC2616 compliance
as ‘origin server”.

Can sometimes cache
per-user data

1
CMS system

HY

AU

-l.-.:. = -.' ..
= F -
.|.: A - T..
=3 ..J.'

The website VG.no is one of Norways
largest in terms of traffic.

Classical news site: rapidly changing
contents in a slow CMS system.

12 Squid caches used as accelerators.

Unhappy with performance and stability.

Multimedia arm of

Norvegian newspaper "Verdens Gang”

Slow response
Terrible peak-handling

Navigator Graph

300 m |
200 m
|
100 m i i /1 |
| |

Week 22 Week 24 Week 26 Week 28 Week 30 Week 32

Median Ping RTT (81.3 ms ava) Oo El/20 H2/20 WE3/20 BEAZ0 W1o/20 W 19720
Packet Loss: 1.28 % average 6.69 % maximum 1.84 % current

Probe: 20 HTTP pings using echoping(l) every 300 seconds cr on Mon Feb 26 12:19:16 2007

I Seconds

Significant loss

Obviously, using a client side cache for
server acceleration is asking for trouble.

But there are no better OSS alternatives.

Besides, why does Squid suck so badly ?

Web Images Groups MNews more »

GO ngle |squid trouble

Web Results 1 - 20 of@bout 1,200,000 for squid trouble, (0.1) seconds)

Search Adwvanced Search
Preferances

Web lmages Groups MNews more »

GOOgle FLinus Torvalds'

Adwvanced Search

Search
Preferances

Web Results 1 - 20 of abliut 1,960,000 for "Linus Torvalds". (0.1: seconds)

Web Images Groups MNews more »

(;0 ngle |squid memory problem Search Ap—f:fzr:;ieiemh

Web Results 1 - 20 of about 1,140,000 for squid memory problem. (0.32 seconds)

Squid is an antique software design

Not your dads computer anymore:

L= s m
4 .‘

(and besides, we have this operating
system which virtualizes all of it)

DISK ?

CPU ?

CPUs/Cores The Virtual Page Cache

formerly known as "RAM”
\ C\aches /

1 £ B4 B

™~ Objects,

possibly
on storage

Squid moves data between RAM and disk.
Squid does not use virtual memory at all.

Kernel definitively schedules data between
RAM and disk.

The fight multiplies disk-1/0O by 2-5 times

RAM DISK (filesystem)

RAM DISK (filesystem) DISK (paging)

-
A
EEEB

Fighting the kernel from userland is plain stupid...

| know what you're thinking, proc:
'Did he send STGHUP or SIGTERM ?'

Well, to tell you the truth, I've forgotten myself in all this
excitement.

But being as this is SIGKILL, the most powerful signal in
UNIX, and would blow your memory clean, you've got to ask
yourself a question:

'Do | feel lucky?'

Well, do ya, proc?

Starting from scratch:
Varnish is a HTTP accelerator only.
Better configuration.
Better management.
(Much) faster.

Content Management Features

What is it about configuration files ?

H H= H= H= H H H H= N

cat /etc/foobar.conf
foobard configuration file
copied from example.conf

/svend 19870104
updated to new version

/knud 19941231
various changes

/valdemar 19960523
DON'T MESS WITH THIS!!!

HDXHSVVaCS=12

allocation modulus=3.17@ N+{fff(21.4%Be”)

overflow queue [default=7]
overflow queue=7

process backwards=if acl does not
acl set= {1 2 3 4 6 7 21 }
invert acls=odd

acl reset = { 3 18 }

VCL - Varnish Configuration Language

sub vcl_recv {

if (req.request != "GET" && req.request != "HEAD") {
pass;

¥

if (req.http.Expect) {
pipe;

¥

if (req.http.Authenticate || req.http.Cookie) {
pass;

¥

Lookup;

Why Yet Another Language ?

Why not simply use {PERL,Tcl,Python,Ruby...} ?

1. The programmers will not be programmers.
2. Speed.

3. Did you miss "domain specific” ?

But you need to write a compiler 7?

Without the hazzle of architecture fitting,
(which registers, which instructions &c) a
compiler is really just a text-processing app.

We compile VCL to C and use cc(1).

...in 3000 lines of code.

Managing Varnish
Command Line Interface for real-time control
Management/Worker process split:

Manager can restart worker

Allows priviledge separation

Contains threading to worker process

Varnish architecture

'

Shared
Memory

Y

logwriter =
stats
ad-hoc

Cluster Manager Cacher
Controll
> ontroller
CmdLine - CmdLine - CmdLine
ChildProcMgt Storage
VCL compiler Log/Stats
_ Params/Args Accept/herder
—— CLl-interface = e
Initialization Backend
— Web-interface Watchdog Worker threads
_ Grim Reaper
— CMS-interface _
Hashing
— SMS-interface 7y
/ y
One binary program C-compiler Shared object

The 02:45am CheatSheet:
scp fromhost:varnishd .
./varnishd -b mywebserver -a :80

ssh dnshost ndc reload

Performance and speed
Program for performance
Use modern features:
Virtual Memory
sendfile(2), accept_filters(2), kqueue(2)

(and every other trick in the book)

Performance Pricelist

e char *p +=5; cPU 0.00000001s
e strlen(p);

* memcpy(p, g, ; ey

* Locking

e System Call

Protection

e Context Switch
e Disk Access I
Mechanical

* Filesystem operation 0.01s

Classical logging is horribly expensive:

Filesystem operation, called once.

FILE *flog; /

flog = fopen(”/var/log/mylog”, "a");

[...]

fprintf(flog, ”“%s Something went wrong with %s\n”,
timestamp(), foo2str(object));

fflush(flog);

Disk 1/O, called 1 mio times

1-0.010 + 1,000,000 *.001 = 16 minutes

Logging to shared memory is almost free:
char *logp, *loge;

<«— Filesystemops, called once.

fd = open(...);
logp = mmap(..., size);
loge = logp + size;

Memory and arithmetic, 1 mio calls

[vn.] /
logp[l] = LOG ERROR;
logp[2] = sprintf(logp + 3,
"Something went bad with %s”, foo2str(obj));
logp[3 + logp[2]] = LOG_END;
logp[0] = LOG_ENTRY;
logp += 3 + logp[2];

2 -0.010 + 1,000,000 *.00001 = 10 seconds

Varnishtop(1) - logfile "top” program

What is my most popular URL ?

S varnishtop -i rxurl

1304

989.
495.
491.
490.
480.
468 .
352.
317.
306.
298.
292.
280.
279.

.86
08
05
01
05
08
12
66
75
79
84
84
94
84

/tmvll. s
/sistenytt.html
/include/global/art.js
/css/hoved.css
/gfk/ann/n.gif
/gfk/ann/ng.gif
/gfk/front/tipsvg.png
/css/ufront.css
/t.gif

/gfk/plu2.gif
/css/front.css
/gfk/min2.gif
/css/blog.css

/

Where does my traffic come from ?

S varnishtop -1 rxheader -I Referer

33913.74 Referer: http://www.vg.no/

4730.72 Referer: http://vg.no/
925.62 Referer: http://www.vg.no
510.10 Referer: http://www.vg.no/pub/vgart.hbs?art
434 .37 Referer: http://www.vg.no/export/Transact/n
349.55 Referer: http://www.vg.no/pub/vgart.hbs?art
344.66 Referer: http://www.vg.no/pub/vgart.hbs?art
324.06 Referer: http://www.vg.no/export/Transact/t
297.25 Referer: http://www.nettby.no/user/
263.82 Referer: http://www.vg.no/sport/fotball/
242 .55 Referer: http://www.vg.no/pub/vgart.hbs?art

Varnishhist(l) - Response-time histogram

/Cache—Hits

Cache-Misses

I
LT A ## #
N S — N S — N S — N S — N S — N S — ¥ B

Real-time statistics via shared memory

16:23:13

Hitrate ratio:

Hitrate avg:

17772105
130213161
129898315

85043
227180
313630

439
54
6196
1656
3222
2258
65685
65686

435
3623
3617

0.

| |
(O] N
OO0l kL O P O O b b

9
0.9986

.55
.22
.23
00
.99
.99
.00
.00
.00
.97
.00
.95
.99
.99

0.9986

Client connections accepted
Client requests received

Cache hits for pass

Backend connections initiated
Backend connections recyles
Backend connections unused

srcaddr

struct srcaddr
sess_mem

sess

object

9 9
0.9986
301.26
2207.26
2201.93 Cache hits
1.44
3.85 Cache misses
5.32
0.01
0.00
0.11 N struct
0.03 N active
0.05 N struct
0.04 N struct
1.11 N struct
1.11 N struct

objecthead

CLI management

S telnet localhost 81
Trying 127.0.0.1...
Connected to localhost.
Escape character is '"]'.
param.show

200 675

default ttl 120 [seconds]
thread pools 5 [pools]
thread pool max 1500 [threads]
thread pool min 1 [threads]
thread pool timeout 120 [seconds]
overflow max 100 [%]

http workspace 8192 [bytes]
sess_ timeout 5 [seconds]
pipe timeout 60 [seconds]
send timeout 600 [seconds]

auto restart on [bool]

[...]

CLI management

param.show overflow max

200 330

overflow max 100 [%3]
Default is 100
Limit on overflow queue length in
percent of thread pool max parameter.

NB: We don't know yet if it is a good
idea to change this parameter.
Caution advised.

CLI management

help
200 281

Avalilable commands:

ping [timestamp]

start

stop

stats

vcl.load <configname> <filename>
vcl.inline <configname> <quoted VCLstring>
vcl.use <configname>

vcl.discard <configname>
vcl.list

param.show [-1] [<param>]
param.set <param> <value>

help [command]

url.purge <regexp>

dump.pool

[...]

"Minus-d-d debugging’

Daemons have traditionally taken '-d'
to mean "run in foreground with debugging”.

Varnish allows you to send the process into
"daemon mode” when started with -d.

No need to stop & start again, once you're
happy with how it is running.

Content Management Features:

Instant purges (URL or regexp)
TTL/Caching policy control in VCL
Load/Situation mitigation in VCL

Version 2 features:
GZIP, Edge-side includes, Vary: etc.

Mavigator Graph
250 m 4

200 m

158 m

Seconds

108 m

58 m

Apr May Jun Jul Aug Sep Oct Now Dec Jdan Feb Mar Apr

Median Ping RTT (46.2 ms avg) O @l/z20 @2/20 WE3/20 W4/720 W16/20 MW 19720
Packet Loss: 0.70 % average 9.13 % maximum 0.00 % current

Probe: 20 HTTP pings using echopingil) every 300 seconds created on Sat May 5 21:32:33 2007

Squid Varnish

Mavigator Graph
250 m 4

200 m

158 m

Seconds

108 m

50 m . LA B

Apr May Jun Jul Aug Sep Oct Now Dec Jdan Feb Mar Apr

Median Ping RTT (46.2 ms avg) O @l/z20 @2/20 WE3/20 W4/720 W16/20 MW 19720
Packet Loss: 0.70 % average 9.13 % maximum 0.00 % current

Probe: 20 HTTP pings using echopingil) every 300 seconds created on Sat May 5 21:32:33 2007

w_/

Squid Varnish
12 servers 3 servers

9 servers @ 150W = 12 MWh/y

12 MWh * 500 kg = 6t CO, equiv.

Further savings:

Network equipment
Rack-space
Cooling
System Admin Hours

S netstat -I bgel 8

input (bgel) output
packets errs bytes packets errs bytes colls
87497 0 16940942 105138 0 110891949 0
86994 2 16507251 105683 0 113001355 0
~C
S uptime

10:35PM up 149 days, 7:32, 1 user, load averages: 0.18, 0.46, 0.

1000 obj/s @ 100Mbit/s

Sample Min Max Median Average Stddev
Full 12,9 3001 16,2 71,1 338,5
90% fractile 12,9 20 15,9 16,3 1,7

(all times are in microseconds)

We...
...don't really know how fast.
...have seen 700 Mbit/s
...have heard 18k obj/s
..have not hit the limit yet.

Varnish version 1 status

Approx 22k lines of code
(squid 2.5 sources: 122k)

A very solid foundation design/code wise.

Pretty darn good quality for a version 1
still too many "assert(foo) /* XXX fix this #*/”

Picking up more and more users
(happy users, as far as | can tell)

Version 2 plans

Bugfixes

More VCL features

GZIP compression
Prefetching

Vary: processing
Edge-Side-Includes "ESI”

Sponsors contact: per.buer@linpro.no

var-nish (var'nish)

n.

1. a. A paint containing |...]

tr.v. var -nished, var -nish-ing, var-nish-es
1. To cover with varnish.

javascript:play('V0032600')

http://varnish-cache.org

Commercial support:
Linpro.no
phk@FreeBSD.org

Reference OS:

FreeBSD, Ubuntu
Packages available:

Yes!
Portable to:

any reasonable POSIX

